
EUROPA Coding Practices
General Practices

Ensure you declare variables and methods in their narrowest scope.• 
If you declare a static variable inside a non-static method, double check that the method should not be static
and also double check that the variable should not be a member of the class.

• 

We discourage writing code in header files unless needed for templates or proven performance.• 
Use STL classes and methods unless what you need is not provided. Same goes for any other code. Re *
use as much as possible.

• 

Pre-processing

Include system headers by using the angle bracket style. (#include <stdio>)• 
Include user files by using the double quote style. (#include "File.h")• 
Do not define your own pre-processor macros to control level of or presence of debugging output or error
checks.

• 

Namespaces

Use the std:: prefix, or 'using namespace std;' when using STL.• 
Put Europa code in the Europa namespace.• 

Constants

Use DEFINE_GLOBAL_CONSTANT and DECLARE_GLOBAL_CONSTANT for globals.• 

Class Members

When handling static data, you must provide an automatic purge mechanism or provide an explicit purge
method.

• 

Initialization and Termination

We should standardize method calls to initialization and termination methods. Such as nddl initialization
which cascades onto constraint engine initialization.

• 

Use

Use const iterators unless you have to use a non-const iterator.• 
When using const iterators, use ++iterator rather than iterator++.• 

References

Direct pointer references are discouraged; use class Id instead.• 
When creating a reference, create an m member that holds the id that gets constructed in the constructor
initializer, in the destructor the m should be removed.

• 

EUROPA Coding Practices 1



When deleting references to ids call delete on the cast operator (e.g. delete (ConstrainedVariable? *) ref).• 

Numbers

Define an enumerated type to handle number references instead of using magic numbers.• 

Classes

Capitalize names of classes. When composing names for classes capitalize the first letter of each word.• 
Declare a virtual destructor.• 

Virtual Classes

Declare a protected constructor.• 
Declare all functions pure virtual.• 

Methods

Declare a method const where possible.• 
Do not return bare pointers or non-const references.• 
If the caller can own a data structure that is to be populated in the callee, create the data structure in the
caller and then pass it by reference as an argument.

• 

Avoid copying of data structures where possible.• 
Declare non-primitive arguments as const references.• 
Return non-primitive values as const references.• 

Checks

Use checkError to express pre-conditions.• 
Use checkError to express invariants.• 
Use checkError to express post-conditions.• 
Avoid using non-const functions in checkError tests.• 
Do not use assert.• 
Do not use Id::isValid outside of checkError.• 

• Do not write "if (Test) checkError(...Check...);". Write "checkError(!Test $$ ...Check...)".

Output

Use the Europa debugging output management system.• 
Do not put debugging output into stdout or stderr.• 

Documentation

Use doxygen style comments with the javadoc style keywords.• 

References 2


	tmpFe1Jy4tracpdf

